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Abstract: Many estimators of the average treatment effect, including the 
 difference-in-means, may be biased when clusters of units are allocated to treat-
ment. This bias remains even when the number of units within each cluster 
grows asymptotically large. In this paper, we propose simple, unbiased, location-
invariant, and covariate-adjusted estimators of the average treatment effect in 
experiments with random allocation of clusters, along with associated variance 
estimators. We then analyze a cluster-randomized field experiment on voter 
mobilization in the US, demonstrating that the proposed estimators have preci-
sion that is comparable, if not superior, to that of existing, biased estimators of 
the average treatment effect.

1  Introduction
In recent years, researchers have paid increased attention to the properties 
of treatment effect estimators for randomized experiments under the design-
based model (see, e.g. Freedman 2008a,b). Under the design-based model 
(Neyman 1923, 1934; Sarndal 1978), potential outcomes are fixed and the only 
source of stochasticity lies in the random administration of a treatment to a 
finite population. Importantly, Freedman (2008a) demonstrated that, under 
a such a model, regression adjustment is generally biased (though consist-
ent) and may reduce efficiency. Researchers have since derived methods that 
do not suffer from these problems (Lin 2013; Miratrix et al. 2013) and assessed 
the operating characteristics of common model-based estimators (Humphreys 
2009; Samii and Aronow 2012) under the design-based paradigm. However, this 
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2      Joel A. Middleton and Peter M. Aronow

research has largely focused on experiments wherein treatment is randomized 
at the unit level.

Although extensively studied under the model-based paradigm (see, e.g. 
Donner and Klar 2000), comparatively little attention has been devoted to 
designs with random allocation of clusters under the design-based paradigm. 
The aforementioned estimators are not directly applicable to cluster-randomized 
designs. Even seemingly design-based estimators – such as the difference-in-
means estimator – may suffer from bias even when all units have an equal prob-
ability of treatment assignment. Importantly, Middleton (2008) proves the bias of 
the difference-in-means estimator (and inconsistency under asymptotic scalings 
that entail a fixed number of clusters) for randomized experiments with unequal 
cluster sizes. Similarly, Imai et al. (2009) recognize the bias of the difference-in-
means estimator and propose solutions that require altering the design of the 
experiment. The authors recommend pair matching on observables in order to 
reduce the amount of bias and variance that may result from a standard anal-
ysis of cluster-randomized experiments. The closest analogue to our proposed 
approach, however, may be found in Hansen and Bowers (2009), which proposes 
similar – though not necessarily unbiased – design-based estimators for cluster-
randomized experiments.1

Bias is not the only statistical property that researchers are interested in. 
In choosing an estimator, researchers often consider efficiency (typically mean 
square error) to be of paramount importance. However, as we show below, the 
bias of estimators such as the difference-in-means estimator may not diminish 
with increasing study size under common designs. Estimators that are asymp-
totically biased are guaranteed to be relatively inefficient for a sufficiently large 
sample size, and we provide an empirical example where bias is critical in under-
mining the relative efficiency of common estimators. In sum, bias cannot always 
be ignored even when efficiency is a primary concern.

In this paper, we propose a simple and unbiased design-based estima-
tor for the average treatment effect (ATE) for cluster-randomized experiments.2 
Drawing from classical sampling theory, we then propose a natural extension to 
improve efficiency and confer the property of location invariance: the Des Raj 

1 Hansen and Bowers (2008) also derives design-based balance tests for cluster-randomized 
 experiments.
2 As in Hansen and Bowers (2008), we consider estimation of the effect of assignment to treat-
ment, which we refer to this simply as the ATE throughout. This quantity is also termed the 
intention to treat effect. Our approach circumvents the issue of compliance, but our estimators 
might be divided by suitable compliance rate estimates to estimate average treatment on treated 
effects, though this may introduce bias from ratio estimation (Hartley and Ross 1954).
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(1965) difference estimator, which remains unbiased even in small samples. We 
also derive two different variance estimators. We then examine a field experiment 
designed to assess the effect of voter mobilization in a US presidential election, 
and use randomization inference to assess the bias and precision of a number of 
estimators under two different null hypotheses. Whereas many common treat-
ment effect estimators, including the difference-in-means, ordinary least squares 
regression and random effects regression fail to unbiasedly recover the ATE, the 
proposed estimators are unbiased and are comparable (if not superior) in terms 
of efficiency.

2  Potential Outcomes
The foundation of our design-based approach is the model of potential out-
comes introduced by Neyman (1923) and popularized by Rubin (1974). Define 
treatment indicator Di∈{0, 1} for units i∈1, 2, …, N such that Di = 1 when unit i 
receives the treatment and Di = 0 otherwise. Assuming that the stable unit treat-
ment value assumption (Rubin 1978, 2005) holds, let Y1i be the potential outcome 
if unit i is exposed to the treatment, and let Y0i be the potential outcome if unit i 
is not exposed to the treatment. The observed experimental outcome Yi may be 
expressed as a function of the potential outcomes and the assigned treatment: 
Yi = DiY1i+(1–Di)Y0i. The causal effect of the treatment on unit i, τi, is defined as 
the difference between the two potential outcomes for unit i: τi≡Y1i–Y0i. And, by 
definition the ATE, denoted Δ, is the average value of τi for all units i. Under this 
model, the only random component of the experiment is the allocation of units to 
treatment and control groups.

Since τi≡Y1i–Y0i, the ATE is equivalently
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where 1
TY  is the sum of potential outcomes if in the treatment condition and 0

TY  
is the sum of potential outcomes if in the control condition. An estimator of Δ can 
be constructed using estimators of 0

TY  and 1 :TY

 � �
1 0

1ˆ ,T TY Y
N

∆  = −   (1)

where �1
TY  is the estimated sum of potential outcomes under treatment and �0

TY  is 
the estimated sum of potential outcomes under control.
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4      Joel A. Middleton and Peter M. Aronow

Formally, the bias of an estimator is the difference between the expected 
value of the estimator (over all randomizations) and the parameter of interest. If 
the estimators �0

TY  and �1
TY  are unbiased, the corresponding estimator of Δ is also 

unbiased since

� �
1 0 1 0

1 1ˆE[ ] E E [ ] .T T T TY Y Y Y
N N

∆ ∆    = − = − =    

3  Properties of the Difference-In-Means Estimator
In this section, we examine the properties of the difference-in-means estimator. 
We start with an examination of the difference-in-means for three reasons. First, 
the difference-in-means is one of the most commonly used esitmators of ATE in 
randomized experiments. Second, insights about the difference-in-means will 
help us understand the bias of other estimators. Third, the derivations will help 
us to identify conditions under which common estimators are not consistent and, 
hence, asymptotically inefficient.

Before discussing random allocation of clusters, we begin with a short deri-
vation of the unbiasedness of the difference-in-means estimator under random 
allocation of individual units.3 We then articulate the source of the bias for the 
difference-in-means estimator when applied to a cluster randomized experiment. 
Finally, we examine the asymptotic properties of the estimator.

3.1   Unbiased Estimation of Treatment Effects Under Random 
Allocation of Units

Define N and nt as integers such that 0 < nt < N. Random allocation of treatment 
implies that nt, a fixed number, units are randomly assigned to treatment (Di = 1) 
and the remaining nc = N–nt are in control (Di = 0). Define I0 as the set of all i such 
that Di = 0 and I1 as the set of all i such that Di = 1.

To derive an unbiased estimator of the ATE under random allocation, we can 
first posit estimators of 0

TY  and 1 .TY  Define an estimator of 0 ,TY

 

�

0 0

0, 0
T

S i i
i I i Ic c

N NY Y Y
n n∈ ∈

= =∑ ∑
 

(2)

3 Throughout, we use the term random allocation to refer to the assignment of a fixed number 
of units (or clusters) to treatment and a fixed number to control, following the terminology of 
Lachin (1988).
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and, similarly, define an estimator of 1 ,TY
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(3)

It is easy to show that the estimators in equations 2 and 3 are unbiased under the 
random allocation rule:
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where 0Y  is the mean value of Y0i over all i units (and is not an observable quan-
tity). A proof for the unbiasedness of �1,

T
SY  directly follows the form of equation 4.

From equation 1, it follows that we may construct an unbiased estimator of Δ:
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where 
1

/i ti I
Y n

∈∑  is the mean value of Yi for all units assigned to treatment and 

0
/i ci I

Y n
∈∑  is the mean value of Yi for all units assigned to control. �S∆  is known 

as the difference-in-means estimator.

3.2   Properties of The Difference-In-Means Estimator Under 
Random Allocation of Clusters

Under random allocation of clusters, the difference-in-means estimator is no 
longer generally unbiased, despite all individuals having the same probabil-
ity of entering into each treatment condition. The unit of randomization is no 
longer the individual: instead, clusters (or groups of individuals) are assigned 
to treatment. While random allocation of units may yield more efficient designs 
in principle, a number of settings may dictate clustered designs in practice. 
Some examples include when unit randomization is infeasible, when outcome 
measures are only available at the level of the cluster, or when unit interfer-
ence (e.g. treatment synergies or spillover effects) is an important aspect of 
treatment.

In settings where unit randomization is infeasible or undesirable, the 
researcher rarely has control over the cluster size (e.g. household, village). As 
a consequence, bias can arise in estimation. We begin this section by deriving 
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6      Joel A. Middleton and Peter M. Aronow

the bias associated with the difference-in-means estimator. As our derivation will 
show, the bias arises whenever outcomes are related to cluster size.

Formally, suppose each cluster j = 1, 2, …, M is assigned to either treatment or 
control. Define mt and M as (fixed) integers such that 0 < mt < M. Now mt clusters 
are randomly assigned to treatment (Dj = 1) and the remaining mc = M–mt clusters 
are assigned to control (Dj = 0). Define J0 as the set of all j such that Dj = 0 and J1 as 
the set of all j such that Dj = 1. Let Y0ij be the response of the ith individual in the jth 
cluster if the cluster is assigned to control and let Y1ij be the response of the ith indi-
vidual in the jth cluster if the cluster is assigned to treatment. Let nj be the number 
of individuals in the jth cluster. Note that all individuals have the same probability 
mt/M of entering treatment.

The estimators in equations 2 and 3 can be rewritten as 
�

1 1
1, 1

/jnT
S ij jj J i j J

Y N Y n
∈ = ∈

= ∑ ∑ ∑  and �
0 0

0, 1
/ .jnT

S ij jj J i j J
Y N Y n

∈ = ∈
= ∑ ∑ ∑  The difference-

in-means estimator in equation 5 can therefore be rewritten

 

� � � 01

1 0

11
1, 0,

1 .
jj nn

ijij j J ij J iT T
S S S

j jj J j J

YY
Y Y

N n n
∆

∈ =∈ =

∈ ∈

 = − = − 
∑ ∑∑ ∑

∑ ∑
 

(6)

The double summations in the numerators make explicit that summation takes 
place across individuals in different clusters. In the denominators, the summa-
tions operate over clusters. While the estimator remains unchanged from equa-
tion 5, expressing it this way reveals a fundamental problem with its application.

The trouble with using the estimator in equation 6 is that the quantities 

1
t jj J
n n

∈
=∑  and 

0
c jj J
n n

∈
=∑  are no longer fixed numbers as they were in equa-

tion 5, but are now random variables. The total number of individuals in treat-
ment and control now depends on the size of the particular clusters assigned to 
the experimental groups. To understand why this dependence is problematic, we 
need only examine equation 4: the term N/nc may be moved to the outside of the 
expectation operator because it is a fixed constant. When nc is a random variable, 
calculating the expectation is more involved. In general, for a ratio of two random 
variables u, v, (u/v),

 

1E E[ ] Cov , 
E[ ]

u uu v
v v v

    
= −           

(7)

if v > 0 (Hartley and Ross 1954). Because the difference-in-means estimator is 
the difference between two ratios of random variables we can use the result in 
 equation 7 to derive the bias of the difference-in-means estimator in equation 6. 
Following Middleton (2008),
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(8)

Inspection of this term reveals that, if the size of the cluster is correlated with the 
potential outcomes in the cluster, the difference-in-means estimator is biased. 
Moreover, the presence of the terms 1/mt and 1/mc shows that the magnitude (and 
even the direction) of the bias can depend on the relative number of clusters allo-
cated to treatment and control.

In some special cases, there will be no bias, such as when the cluster size 
does not vary or when there is no covariance between cluster size and outcomes. 
Nonetheless, in applied research we might expect cluster size to be related to 
outcomes. For example, precinct size may be related to the characteristics of the 
precinct, such as partisan composition and voting rates. In Section 6 we show 
an example where cluster size is significantly related to treatment effect. Such 
an association between cluster size and treatment effect has been referred to as 
nonignorable cluster size (e.g. Hoffman et al. 2001).

3.3   Asymptotic Properties of the Difference-In-Means 
Estimator With Random Allocation of Clusters

In this section, we demonstrate two important facts about the difference-in-
means estimator. First, in a proof adapted from Middleton (2008), we will show 
that the difference-in-means estimator is consistent as the number of clusters, 
M, grows. Second, we demonstrate that the difference-in-means estimator is not 
necessarily consistent as N grows.

Consistency of a statistic under a finite population is defined given a sequence 
of h finite populations H where Nh < Nh+1, nth < nth+1 and nch < nch+1 for h = 1, 2, 3, …. The 

estimator �S∆  is said to be a consistent estimator of Δ if � p
S∆ ∆→  (converges in 

probability) as h→∞.
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8      Joel A. Middleton and Peter M. Aronow

To show that the difference-in-means estimator is consistent with large M, we 
follow Brewer (1979) in assuming that as h→∞, the finite population H increases 
as follows: (1) the original population of M clusters is exactly copied (h–1) times; 
(2) from each of the h copies, mt clusters are allocated to treatment (such that 
0 < mt < M) and the remaining mc = M–mt are allocated to control; (3) the h subsets 
are collected in a single population of hM clusters, with hmt clusters in treatment 
and hmc = hM–hmt in control; and (4) �S∆  is defined as the difference-in-means 
estimator as in equation 5, only now summation takes place across all hmc and 
hmt clusters. Figure 1, Panel A illustrates this sort of asymptotic growth.

A less restrictive set of assumptions is possible, but this setup is conveni-
ent because H is easy to visualize and moment assumptions are built-in. We 
express the estimator as, �

1 1 0 01 1
/ / ,j jn n

S ij j ij jj J i j J j J i j J
Y n Y n∆

∈ = ∈ ∈ = ∈
= −∑ ∑ ∑ ∑ ∑ ∑  

where in this case J1 is defined as the set of hmt treatment clusters and J0 is defined 
as the set of hmc control clusters. As h→∞, by the weak law of large numbers, 

∈ = ∈ = ∈
→ ⋅ → ⋅ → ⋅∑ ∑ ∑ ∑ ∑
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(9)

Figure 1: Two versions of Brewer’s simple notion of asymptotic growth. The population is 
simply copied h–1 times. In Panel A, copies of the clusters are made and the number of clusters 
grows. In Panel B, the number of clusters is fixed and the individuals within are copied. An 
estimator is consistent under asymptotic growth if it converges to the parameter as h→∞.
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Unbiased Estimation of the Average Treatment Effect      9

This proves that the difference-in-means estimator is consistent as the 
number of clusters grows.

In the case where the size (rather than the number) of the clusters grows as 
h→∞, the finite population H increases as follows: (1) the original population of 
M units is exactly copied (h–1) times, but this time the h copies of a cluster are 
considered part of one supercluster; (2) mt of the clusters are allocated to treat-
ment (such that 0 < mt < M) and the remaining mc = M–mt are allocated to control; 
and (3) �S∆  is defined as the difference-in-means estimator as in equation 9, but 
now the inner summation takes place across all hnj units in each cluster. Figure 1, 
Panel B illustrates this sort of asymptotic growth.

To show that the difference-in-means estimator is not necessarily consistent 
simply with large N, we express the estimator as,
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1 0 1 0
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j jj jhn nhn n
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∑ ∑ ∑ ∑
 

(10)

As h→∞, the estimate remains unchanged with large N if the number of clus-
ters is fixed. This proves that the bias articulated in equation 8 is unmitigated for 
increasingly large clusters.

3.4  Discussion

The results of this section highlight the fact that, for some designs, bias may not 
be mitigated with increased units. For example, imagine a study of the effect of 
state-level policy on public opinion. Increasing the number of surveys conducted 
does nothing to decrease bias in that case since the number of states is fixed.

More troubling, the above results also suggest that the bias of an estimator 
that averages together a number of biased sub-estimates will not diminish with 
increasing number of sub-estimates. Consider a block randomized design where 
clusters (e.g. houses, clinics, precincts) are randomized; if a fixed effects regres-
sion is used to “control” for groups, then adding more units by increasing the 
number of blocks (strata) does not diminish the bias. This is because the fixed 
effects estimator is simply a weighted average of group-level difference-in-means 
estimates estimates (cf. Angrist and Pischke 2009, Chapter 5).4

4 However, as the formulas suggest, a way to mitigate such bias would be to block units based 
on cluster size as suggested by Imai et al. (2009).
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10      Joel A. Middleton and Peter M. Aronow

4   Unbiased Estimation of Treatment Effects Under 
Random Allocation of Clusters

By understanding bias as a problem fundamental to ratio estimation, we can 
circumvent the bias with an alternative design-based estimator. Notationally, it 
helps to clarify the task if we consider cluster totals – i.e. the sum of the responses 
of the individuals in each cluster. Define 0 01

jnT
j iji

Y Y
=

=∑  as the sum of responses of 
the individuals in the jth cluster if assigned to control and 1 11

jnT
j iji

Y Y
=

=∑  as the sum 
of responses of the individuals in the jth cluster if assigned to treatment. For each 
individual, only one of the two possible responses, Y0ij or Y1ij, may be observed and, 
since individuals are assigned to treatment conditions in clusters, for any given 
cluster, only one of the possible totals 0

T
jY  or 1 ,T

jY  may be observed. The observed 
cluster total for cluster , ,T

jj Y  may be expressed as: 1 0(1 ) .T T T
j j j j jY DY D Y= + −

Using this new notation, the ATE may be expressed as

1 0 1 01 1 1 1
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We can again construct an unbiased estimator for Δ with unbiased estimators of 
0
TY  and 1 .TY  Following the logic of equation 4,
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(11)

One can think of this estimator as estimating the average of the cluster totals 
(among control clusters) and then multiplying by the number of clusters M to get 
the estimated total for all units in the study. Likewise,
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1, 1 .T T T
HT j j

j J j Jt t

M MY Y Y
m m∈ ∈
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(12)

Following the same steps as equation 4, it can be shown that �0,
T
HTY  and �1,

T
HTY  

are unbiased estimators of 0
TY  and 1 ,TY  respectively. The terms M/mt and M/mc 

are fixed; when taking the expectations of equations 11 and 12, they can be moved 
outside the expectation operator. Note that the random variables at the root of 
the ratio estimation problem above, nt and nc, do not appear in either estimator. 
From these two unbiased estimators, we may therefore construct an estimator of 
the ATE:
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We refer to this estimator as the Horvitz-Thompson (HT) estimator because it is 
a special case of the well-known estimator from sampling theory (Horvitz and 
Thompson 1952; Chaudhuri and Stenger 2005).

The HT estimator can be criticized on two grounds. First, as Imai et al. (2009) 
suggest, this estimator is not location invariant. We offer a proof of the non- 
invariance of the HT estimator in Section 4.1. Second, the HT estimator can be 
highly imprecise; cluster sums tend to vary a great deal because there are more 
individuals in some clusters than in others. In large clusters, totals may tend to be 
large and in small clusters, totals may tend to be smaller. In Section 5.1, we will 
develop an estimator that addresses both these limitations.

4.1  Non-Invariance of the Horvitz-Thompson estimator

To show that the estimator in equation 13 is not invariant to location shifts, 
let 1ijY ∗  be a linear transformation of the treatment outcome for the ith person 
in the jth cluster such that 1 0 1 1ij ijY b b Y∗ ≡ + ⋅  and likewise, the control outcomes, 

0 0 1 0 .ij ijY b b Y∗ ≡ + ⋅  Invariance to this transformation would imply that, when analyz-
ing the transformed data, we achieve the relationship between the old estimate 
and new estimate such that

 � �
1 ,HT HTb∆ ∆∗ = ⋅  (14)

i.e. the ATE estimated from linearly transformed outcomes will be equal to the 
ATE estimated from non-transformed outcomes multiplied by the scaling factor 
b1. In Appendix A, we demonstrate that the HT estimator is not location-invariant 
because the estimate based on the transformed data will be

 

� �

1 0

0 1
1 1 .HT j j HT

j J j Jt c

Mb n n b
N m m

∆ ∆∗

∈ ∈

 
= ⋅ − + ⋅ 

  
∑ ∑

 
(15)

Unless b0 = 0, the term on the left does not generally reduce to zero but instead 
varies across treatment assignments, so equation 15 is not generally equivalent 
to equation 14 for a given randomization. Note that, while a multiplicative scale 
change (e.g. transforming feet to inches) need not be a concern, a linear trans-
formation that includes a location shift (e.g. reversing a binary indicator variable 
or transforming Fahrenheit to Celsius) will lead to a violation of invariance. For 
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12      Joel A. Middleton and Peter M. Aronow

any given randomization, linearly transforming the data such that the intercept 
changes can yield different estimates.

4.2   Deriving Estimators of the Variance of the Horvitz- 
Thompson Estimator Under Random Allocation of Clusters

In our derivation of variances, we follow the general formulations of Freedman 
et al. (1998), which follow from a long tradition dating from Neyman (1923). The 
variance of the estimator in equation 13 is

 
�( ) �( ) � �( )0 1 0 12

1ˆV( ) V V 2Cov , .T T T TY Y Y Y
N

∆  = + − 
 

(16)

This expression is the true, not estimated, variance. To construct an unbiased 
estimator of this variance, we must have unbiased estimators of each of the quan-

tities in equation 16. While unbiased estimators may be constructed for �( )0V TY  

and �( )1V ,TY  there does not generally exist an unbiased estimator for � �( )0 1Cov , T TY Y  
because the joint distribution of potential outcomes is not observable.

We may, however, derive a generally conservative estimator of the variance. 
First, we derive the components of the true variance from equation 16. From the 
principles of finite population sampling,

�( ) 2
2

0, 0V ( ),
1

T Tc
HT j

c

M mMY Y
m M

σ
 −

=   −

�( ) 2
2

1, 1V ( ),
1

T Tt
HT j

t

M mMY Y
m M

σ
 −

=   −

and

� �( ) 2

0, 1, 0 1Cov , ( , ),
1

T T T T
HT HT j j

MY Y Y Y
M

σ=−
−

where, given features vj and wj for j∈1, …, M, finite population vari-

ance 
2

2
1 1

1 1( ) M M
j j jj j
v v v

M M
σ

= =

 
= −  ∑ ∑  and finite population covariance 

1 1 1

1 1 1( , ) .M M M
j j j j j jj j j
v w v v w w

M M M
σ

= = =

   
= − −      ∑ ∑ ∑
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Unbiased Estimation of the Average Treatment Effect      13

From equation 16,

� 2 2 2
2 2

0 1 0 12

2 22
0 1 2 2

0 1 0 12

1 2V( ) ( ) ( ) ( , )
1 1 1

( ) ( ) 1 [ 2 ( , ) ( ) ( ) ] .
1 1

T T T Tc t
HT j j j j

c t
T T
j j T T T T

j j j j
c t

M m M mM M MY Y Y Y
m M m M MN

Y YM M Y Y Y Y
M m m MN

∆ σ σ σ

σ σ
σ σ σ

     − −
= + +        − − − 
     = + + − − − −      

(17)

Since 2 2
0 1 0 12 ( , ) ( ) ( ) 0,T T T T
j j j jY Y Y Yσ σ σ− − ≤  it follows that

� �( )
2 23

0 1
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( ) ( )
V( ) V .
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T T
j j

HT HT
c t

Y YM
m mN M

σ σ
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 ≤ = +

−   

Substituting unbiased estimators of 2
0( )T
jYσ  and 2

1( )T
jYσ  (Cochran 1977, theorem 

2.4), we may derive an unbiased estimator of the quantity �
apxV ( ),HT∆

� ( ) ( )
0 1

2 2
2

2V̂( ) ,
( 1) ( 1)

T T T T
j cj j tjj J j J

HT
c c t t

Y Y Y YM
m m m mN

∆
∈ ∈

 
− − 

= + − −  

∑ ∑

where 
0

/ ,T T
mj j cj J
Y Y m

∈
=∑  the mean value of T

jY  over all j∈J0 and 
1

/ ,T T
tj j tj J
Y Y m

∈
=∑  

the mean value of T
jY  over all j∈J1.5

The bias of the variance estimator is always nonnegative, thus ensuring the 

variance estimator is conservative. However, while �V̂( )HT∆  is conservative, it 
may also be imprecise. In addition, when mc or mt is 1 the estimate is undefined. 

In general, it is impossible to consistently estimate �V( )HT∆  in experiments per-
formed on finite populations (Aronow et al. 2014) and thus it may be the case that 
no single variance estimator is generally adequate. This issue is compounded 
when N is small and asymptotic approximations may be poor.

We propose an alternative estimator of the variance by assuming sharp 
null hypothesis and either analytically or computationally calculating the vari-
ance of the estimator. One common sharp null hypothesis is that of the sharp 
null hypothesis of no treatment effect: H0:τi = 0, ∀i. H0 implies that the treatment 
has no effect whatsoever on the outcome, i.e. that both potential outcomes are 

5 When M is large, researchers may encounter numerical problems computing M2 and, later, 

M4. This problem may be obviated by replacing M2/N2 with 
2

1

1 ,M

jj
n

M

−

=

 
  ∑  the reciprocal of the 

square of the average number of units per cluster.

Brought to you by | University of California - Berkeley
Authenticated

Download Date | 11/3/15 12:13 AM



14      Joel A. Middleton and Peter M. Aronow

identical: Y0i = Y1i = Yi. When the sharp null hypothesis of no effect holds, we know 
two important facts: σ2(Y0j) = σ2(Y1j) = σ2(Yj) and σ(Y0j, Y1j) = σ2(Yj). By substituting σ2 
into the last line of equation 17, we may calculate the true variance under this null 
hypothesis,

�
2 22

2 2 2
2

4 2

2

( ) ( ) 1V ( ) [ 2 ( ) ( ) ( ) ]
1 1

( )
.

( 1)

T T
j jN T T T

HT j j j
c t

T
j

c t

Y YM M Y Y Y
M m m MN

M Y
N M m m

σ σ
∆ σ σ σ

σ

  
  = + + − −

− −    

=
−

Note that if the sharp null hypothesis of no effect holds, �V ( )N
HT∆  is the true 

variance, which can be calculated from the data exactly or by way of resampling. 
When the sharp null hypothesis of no effect does not necessarily hold, �V ( )N

HT∆  
may be construed as an estimator of �V( ).HT∆  We therefore refer to a variance 
estimator constructed by assuming the sharp null hypothesis of no effect as 
�V̂ ( ).N

HT∆
The primary benefit of using �V̂ ( )N

HT∆  is that it tends to be more stable 
than �V̂( ),HT∆  particularly when either nc or nt is small, because it combines 
the variance of the treatment and control groups. In cases where �V̂( )HT∆  is 
imprecise, �V̂ ( )N

HT∆  may be preferable. Highly imprecise standard errors may 
be downwardly biased even when the associated variance estimator is con-
servative. The square root is a concave function so, by Jensen’s inequality, 

� �0.5 0.5ˆ ˆE[V( ) ] ( E[V( ) ] ) .HT HT∆ ∆≤  Since the estimates from �V̂ ( )N
HT∆  will tend to 

remain stable across randomizations, its use may therefore avoid the bias result-
ing from Jensen’s inequality. However, when effect sizes are large, �V̂ ( )N

HT∆  will 
tend to overestimate the true sampling variability.

Recent theoretical results suggest that �∆V̂ ( )N
HT  may be adequate as a con-

servative approximation. In general, �∆V̂ ( )N
HT  will be conservative relative to the 

true variance if effects are constant (at the cluster scale) or if the number of clus-
ters is balanced, in a result that directly follows from theorem 3 of Ding (2014) 
and Samii and Aronow (2012) (by way of the relationship between pooled and 
combined variance). These results indicate �∆V̂ ( )N

HT  will have a higher value 
than that of the true variance if treatment effects are in fact constant at the cluster 
scale. For these reasons, choosing the sharp null of no effect as an approximation 
will generally be conservative among the class of hypotheses such that effects are 
constant at the cluster scale.6

6 Researchers may seek to calculate separate variance estimators for each of a grid of 
 hypothesized, constant treatment effects, and use these to form a confidence interval by way of 
inverting hypothesis tests. We thank an anonymous reviewer for this suggestion.

Brought to you by | University of California - Berkeley
Authenticated

Download Date | 11/3/15 12:13 AM



Unbiased Estimation of the Average Treatment Effect      15

Computational approximations of exact bias and variance terms may be 
 computed for any estimator under any given sharp null hypothesis. Another note-
worthy benefit of using �V̂ ( )N

HT∆  is that it can be computed under designs where 
�V̂( )HT∆  cannot be computed, such as pair randomized designs.

4.3  Block Randomized Designs

In this section we consider how to generalize the HT estimator to block rand-
omized designs. In a block randomized design, clusters are first classified in to 
one of B blocks, often on the basis of homogeneity of the clusters. In the bth block, 
a fixed number of clusters, mtb, are assigned to treatment and the rest, mcb, to 
control.

As each block represents an independent randomized experiment, the HT 
estimator and variance estimators may be applied to each block separately. For 
the bth block the estimator of the ATE can be written �.b

HT∆  An unbiased estimate 
of the ATE for all the units in the study can be written as a weighted average of the 
block-level estimates,

 

� �

1
,

B
B bb
HT HT

b

N
N

∆ ∆
=

=∑
 

(18)

where Nb is the number of units in the bth block. From first principles, the variance 
of the estimator is

 

�( ) �( )2

2
1

V V ,
B

B bb
HT HT

b

N
N

∆ ∆
=

=∑
 

(19)

and conservative variance estimation can be achieved by “plugging in” conserva-
tive estimators of the variance for each of the �( )V .b

HT∆  Alternatively, Monte Carlo 
simulations may be used as an approximation.

5  Difference Estimators
In this section, we propose a simple extension of the HT estimator to improve the 
efficiency of the estimator as well as confer the important property of location 
invariance.
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16      Joel A. Middleton and Peter M. Aronow

5.1  Des Raj Difference Estimator for Cluster Size

A major source of variability with the HT estimator is the variation in the number 
of individuals in each cluster. Clusters with large nj will tend to have larger 
values of T

jY  – that is, in many applications, as clusters get larger, the sum of 
the  outcomes for that cluster will also tend to get larger. We use the Des Raj (1965) 
difference estimator to reduce this variability. To derive the Des Raj difference 
estimator in this context, we first derive our estimates of the study population 
totals, 0

T
jY  and 0

T
jY  by “differencing” off some of the variability:

 
�

0

0, 1 ( ( / ) ),T T
R j j

j Jc

MY Y k n N M
m ∈

= − −∑
 

(20)

where constant k is a prior estimate of the regression coefficient from a regression 
of T

jY  on nj, and (nj–N/M) is the difference between the size of cluster j and the 
average cluster size.7 k is also roughly equivalent to an estimate of the average 
value of Yij for all units and does not have a causal interpretation. In Section 5.3, 
we derive an exact expression for the optimal value of k, which depends on both 
potential outcomes and the specifics of the experimental design. Similarly,

 

�

1

1, 1 ( ( / ) ).T T
R j j

j Jt

MY Y k n N M
m ∈

= − −∑
 

(21)

To develop an intuition about this method, note that it is equivalent to defining 
a new “differenced” variable ,T

jU  where ( / )T T
j j jU Y k n N M= − −  and conducting 

the analysis based on T
jU  instead of .T

jY  So long as k is fixed before analysis, this 
strategy does not lead to bias because

 E [ / ] E[ / ] 0 0.j jk n N M k n N M k− = − = ⋅ =  (22)

It follows that the HT and Des Raj estimators have the same expected value. Since 
�

0, 1
T
RY  and �1, 1

T
RY  are unbiased, it follows that the Des Raj estimator,

� � �
1 1, 1 0, 1

1 ,T T
R R RY Y

N
∆  = − 

is also unbiased.8

7 A similar estimator is proposed by Hansen and Bowers (2009), differing primarily in that it 
contains a random denominator.
8 Note that estimating k from the same data set can lead to bias, as we demonstrate in 
 Appendix  B, raising the question of where to obtain a suitable value. In Section 6, we sug-
gest using data from other blocks in experiments with blocking. Another option would be to 
find an auxilliary data source from which a trustworthy value of k can be estimated. In survey 
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Deriving a conservative estimator of the variance of the Des Raj estimator 
follows directly from Section 4.2:

 

� ( ) ( )
0 1

2 2
2

1 2V̂( ) ,
( 1) ( 1)

T T T T
j cj j tjj J j J
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c c t t
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(23)

where 
0

/ ,T T
cj j cj J

U U m
∈

=∑  the mean value of T
jU  in the control condition and 

1
/ ,T T

tj j tj J
U U m

∈
=∑  the mean value of T

jU  in the treatment condition. Similarly, 
from Section 4.2, we may easily construct a variance estimator for �1R∆  by assum-
ing the sharp null hypothesis of no treatment effect:

�
4 2

1 2

( )
V̂ ( ) .

( 1)

T
jN

R
c t

M U
N M m m

σ
∆ =

−

As an alternative, Monte Carlo simulations can be used to compute this quantity.

5.2  Invariance of the Des Raj Difference Estimator

One benefit of the Des Raj estimator is that it has invariance to location transfor-
mation, regardless of the accuracy of the researcher’s choice of k. In this section, 
we prove the invariance of the Des Raj estimator. When Y0ij and Y1ij are linearly 
transformed, k will also change: the same transformation must be applied to k as 
to 0

T
ijY  and 1 .T

ijY  Since k is on the same scale as the outcome variable, when the 
outcome variable is transformed, k will also be transformed:

 0 1( ).k b b k∗ = + ⋅  (24)

Using this new k*, we may again define new differenced treatment outcomes,

1 1

0 1 1 0 1
1

0 1 1 0 1

0 1 1

( / )

( ) ( ) ( / )

( ) ( / )
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j

T T
j j j

n

ij j
i

T
j j j

T
j

U Y k n N M

b b Y b b k n N M

n b b Y b b k n N M
b N M b U

∗ ∗ ∗

=

= − ⋅ −

= + ⋅ − + ⋅ ⋅ −

= ⋅ + ⋅ − + ⋅ ⋅ −
= ⋅ + ⋅

∑

 sampling, researchers sometimes accept the bias of estimating k with regression (Sarndal 1978), 
but the focus of the current paper is on unbiased estimation so regression estimation is outside 
our scope. We recommend that either the value of or procedure for choosing k be specified in 
a  preanalysis planning document, so as to reduce the uncertainty associated with researcher 
discretion.
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18      Joel A. Middleton and Peter M. Aronow

And, likewise, we may define new differenced control outcomes, 
0 0 1 0/ .T T
j jU b N M b U∗ = ⋅ + ⋅  The estimate based on these transformed variables will be
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= ⋅

∑ ∑

∑ ∑

∑ ∑

 (25)

The Des Raj estimator is therefore invariant to linear transformation because any 
linear transformation to the outcome will necessarily be reflected in k.

Note that the HT estimator may be considered a special case of the Des Raj 
estimator when k = 0. However, unlike the HT estimator, the explicit assumption 
that k = 0 ensures that when the scale of the outcome changes, the scale of k also 
changes. The non-invariance of the HT estimator may therefore be thought of as a 
failure to recognize the implicit assumption that k = 0 and to transform to k* when 
the scale of the outcome changes.

5.3  Optimal Selection of k

To derive the optimal value of k, we begin by noting that the variance of 0
T
jU  is

( )

( )

2

0 0
2

0

2

0 0

2 2 2
0 0

( )

( / )

( ) ( ) 2 ( , ),

T T
j j

jT
j

T T
j j j

j

T T
j j j j

U U
U

M

Y k n N M Y

M
Y k n k n Y

σ

σ σ σ

−
=

− − −
=

= + −

∑

∑

where 0
T
jU  is the mean value of 0

T
jU  over all j clusters. ,

coptimk  the value of k that 
minimizes 2

0( ),T
jUσ  can be found using simple optimization. Since the second 

derivative with respect to k, 2σ2(nj), must be positive, we may set the first deriva-
tive equal to zero and solve for k, so that
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0
2

( , )
.

( )c

T
j j

optim
j

n Y
k

n
σ

σ
=

 
(26)

Equation 26 should look familiar to the reader: the best fitting k is the ordinary 
least squares coefficient.

Likewise, the optimal value of k for the potential outcomes under treatment 
is 2

1( , ) / ( ).
t

T
optim j j jk n Y nσ σ=  Given that 

toptimk  does not generally equal ,
coptimk  a 

researcher could justifiably identify different values of k for treatment and control 
groups. In practice, however, this would require a good deal of prior knowledge 
(including knowledge about treatment effects); for this reason, a single value of k 
will typically be preferable. In Appendix C, we derive a single optimal value of 

, / / .
c toptim t optim c optimk k m k M m k M∗ = +

Unlike a structural parameter, the value of koptim* will depend on the number 
of clusters assigned to treatment and to control. Perhaps counterintuitively, when 
there are fewer clusters in the control condition, koptim* is more heavily weighted 

toward ,
coptimk  the value of k that minimizes 2

0( )T
jUσ  (and vice versa). A simple 

intuition for this weighting is that the condition with fewer clusters will con-
tribute more to the overall variance of the estimator. Consequently, the greatest 
increase in precision comes from adjustments made to units in that condition.

The chosen value of k will reduce the variability of the Des Raj estimator, �1 ,R∆  
relative to the HT estimator when, for koptim*  > 0, 0 < k < 2koptim* and, for koptim*  < 0, 
0 > k > 2koptim*. In other words, the Des Raj estimator will have better precision than 
the HT estimator unless the researcher picks a k with the wrong sign or chooses 
a k that is more than twice the magnitude of koptim*. Because koptim* will tend to be 
close to the average outcome for all individuals, the researcher will usually have 
prior knowledge about the mean individual-level outcome.9

Under the sharp null hypothesis of no treatment effect, koptim*= 
koptimc

=koptimt
= 2( , ) / ( ),T

j j jn Y nσ σ  and thus the optimal k would be the ordinary 
least squares coefficient from regressing T

jY  on nj. Prima facie, the intuitive next 
step would be to try to estimate k from the data, utilizing ordinary least squares 
on the observed data (perhaps controlling for Dj). However, regression estimates 
of k can lead to bias in the estimation of treatment effects. In Appendix B, we 
demonstrate that the bias from estimating k from within-sample data is

� �
1, 1 0, 1 ˆ ˆE ( Cov( , ) Cov( , ) ),
T T
R R

cj tj

Y Y M k n k n
N N

∆
 − − = −  

9 Note that our fundamental uncertainty about the optimal value of k does not itself contribute 
to the uncertainty of our estimate since k is treated as a fixed constant, e.g. in equation 23.
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20      Joel A. Middleton and Peter M. Aronow

where k̂  is an estimator of k, tjn  is the mean value of nj for clusters in the treat-
ment condition in a given randomization and cjn  is the mean value of nj for units 
in the control condition in a given randomization.

Knowing the optimal value of k under the sharp null hypothesis of no treat-
ment effect is nevertheless informative as we seek to construct principled prior esti-
mates for k. By using the ordinary least squares estimator on auxiliary data with 
similar potential outcomes, we can approximate koptim* with out-of-sample data.

As we will demonstrate in our empirical example, such auxiliary data can 
come from the other blocks in an block randomized experiment. If one was con-
cerned that estimating the values of k from other blocks of an experiment would 
lead to additional stochasticity in the values of 0

T
jU  and 1 ,T

jU  Monte Carlo simula-
tions (whereby the values of k are recomputed for each simulation) may be used 
to compute the sharp null variance estimate.

5.4   Des Raj Difference Estimator for Cluster Size and 
Covariates

The Des Raj estimator may also be extended to include other covariates which 
may further reduce the sampling variability of the estimator. Assume the 
researcher has access to A covariates for each individual i in cluster j, denoted 

by , 1, 2, , .T
aijX a A∈ …  Define the cluster total of the covariate, 

1
,jnT

aj aiji
X X

=
=∑  and 

define the sum of the Xaij across all individuals in all clusters, 
1 1

.jM nT
a aijj i

X X
= =

=∑ ∑  It 
is simple to adapt the Des Raj estimator to incorporate these additional covariates. 
Define constants k′ and ka (∀a) as prior estimates of the coefficients associated 
with a regression of Yj on cluster size and cluster-level covariates, respectively. 
Again, k′ and ka do not have causal interpretations. It follows that we may define

�

0

0, 2
1adjusting for size

adjusting for other covariates

( / ) ( / )
A

T T T T
R j j a aj a

j J ac

MY Y k n N M k X X M
m ∈ =

 
= − − − −′ 

  
∑ ∑

�����������
���������������

and
�

1

1, 2
1

( / ) ( / ) .
A

T T T T
R j j a aj a

j J at

MY Y k n N M k X X M
m ∈ =

 
= − − − −′  ∑ ∑

By the logic of equation 22, �0, 2
T
RY  and �1, 2

T
RY  are unbiased estimators of 0

TY  and 
1 ,TY  respectively. It follows that we may again construct an unbiased estimator 

of Δ,
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� � �
2 1, 2 0, 2

1 .T T
R R RY Y

N
∆  = − 

Following the same steps as in equation 25, it can be shown that as long as k′ 
undergoes the same linear transformation as the original data and ka (∀a∈A) 
undergoes the same multiplicative scale shift, the Des Raj estimator with covari-
ates will also be invariant. It will also be more efficient than the preceding esti-
mators if the researcher’s estimates for k′ and ka are reasonable; constructing 
variance estimators for �2R∆  is simple and follows directly from Section 5.1.

Note that the efficiency characteristics of this Des Raj estimator may be 
derived as in Section 5.3, where the same intuitions about efficiency hold. In prin-
ciple, a researcher should choose covariates that together do the best job of pre-
dicting values of the potential outcomes to achieve the values of 0, 2

T
RY  and 1, 2

T
RY  

with the lowest variability across randomizations. In practice, a researcher might 
apply a variable selection method such as penalized regression techniques using 
an auxiliary data set to identify suitable covariates and values of k.

6  Application
In this application we reanalyze the data from Green and Vavreck (2008) who 
used a cluster randomized design to examine the effectiveness of television ads 
on voter turnout among 18- and 19-year-old voters in the 2004 presidential elec-
tion. The study randomized television cable districts to either a treatment group, 
in which advertisements encouraging young people to vote were shown, or to 
the control group. The original experiment included a total of 23,869 voters in 85 
television cable districts in blocks (strata) of size 2 or 3. Because we wanted to use 
prior turnout in the cable district as a covariate in our analysis, we limited the 
analysis to the 80 cable districts for which this information was available from the 
authors. This yielded 40 blocks of two cable districts each (one in treatment, the 
other in control) and a total of 22,733 individual voters.

The outcome measure of interest, Yij, is whether or not the individual i in 
cluster (cable district) j voted in the 2004 American presidential election (coded 
1 if the individual voted, 0 if the individual did not vote). Because 18 and 19 year 
olds are new registrants they have no prior voter history, so individual voter 
history could not be used for covariates. However, we use turnout rate in the cable 
district in the 2000 election as a covariate as well as age. While the covariates are 
somewhat less than ideal because they are unlikely to be particularly predictive, 
they provide us with an opportunity to examine how the Raj difference estimator 
performs when covariates are not particularly informative. In such a situation we 
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22      Joel A. Middleton and Peter M. Aronow

might expect koptim to be near zero and values of k chosen may actually reduce the 
efficiency of the Raj difference estimator since it is less likely to be the case that 
2koptim > k > 0 when koptim = 0.

6.1  Randomization inference

Randomization inference (RI) will allow us to assess the bias and variance of 
any given estimator. In addition, RI allows the researcher to perform completely 
nonparametric significance testing (see, e.g. Rosenbaum 2002). We refer to the 
estimate produced by a given estimator as the test statistic. RI assumes that a 
given sharp null hypothesis holds and evaluates the test statistic for every pos-
sible random assignment of units to treatment and control. By recalculating the 
test statistic for each possible treatment assignment, the reference distribution of 
the test statistic is constructed. Fisher’s exact test is a well-known form of RI for 
significance testing, but the method is much more general.

Because the total possible permutations increase rapidly with population 
size, RI may be computationally infeasible. We may use Monte Carlo simula-
tions to approximate RI by repeatedly assigning units to treatment and control 
groups randomly and estimating the test statistic that would be observed for each 
 repetition. The distribution of the test statistic across randomizations forms the 
reference distribution of the statistic. As the number of repetitions gets large, the 
distribution of the test statistic based on repeated randomizations converges to 
that of full RI. This method can achieve results arbitrarily close to RI by increasing 
the number of repetitions.

We use randomization inference to examine the behavior of our estimators 
and compare them with the behavior of three commonly used estimators. We 
conduct randomization inference for two scenarios (5000 iterations). The first 
scenario examines the behavior of the estimators under the sharp null hypothesis 
of absolutely no treatment effect. The second scenario examines the behavior of 
estimators under heterogeneous treatment effects.

6.2  Imputing Missing Potential Outcomes

Computing the test statistics under repeated randomizations requires that we can 
observe both potential outcomes for each unit. Since in reality we only observe 
the response of unit i under one of the treatments, we must impute the value of 
the missing potential outcome before conducting RI. We conduct RI using two 
different methods of imputation.
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Unbiased Estimation of the Average Treatment Effect      23

The first method assumes the sharp null hypothesis of no treatment effect. 
This effectively imputes the missing potential outcome with the observed poten-
tial outcome.

In the second method we simulate heterogeneous treatment effects, first 
modeling the data using logistic regression in order to impute missing potential 
outcomes. This method looks to the data as a guide to creating realistic potential 
outcomes that have a similar structure to the original data. We used the logistic 
regression model,

1
1

1
( 1) 1 1 exp

F

ij j j j j f f
f

P Y t n n tα τ β φ γ Γ

−
−

=

  
= = − + + + + +    

∑

where tj is a treatment indicator for cluster j, nj is the cluster size, F is the number 
of blocks (in this case, 40), Γf is an indicator variable indicating whether cluster 
j is in block f. The terms α, τ, β, φ and γf are coefficients estimated from the data 
using maximum likelihood methods. Note the coefficient φ is responsible for the 
heterogeneous treatment effects. We estimate τ as 0.4, β as 1.4 and φ as –0.9.

We used this model to impute missing potential outcomes for each individ-
ual. To do so, the latent probability of response (voting) was first computed for 
each unit when treated, pti, and when not treated, pci, using the estimated model. 
Each missing Yci and Yti was imputed using a random draw from a Bernoulli 
random variable with probability estimated from the logistic regression model. 
The imputation process was conducted for each iteration of the RI. Marginalizing 

over the imputation process, the ATE is in expectation 
( )

0.007,ti cii
p p
N

−
=∑  or 

0.7 percentage points.

6.3  Treatment effect estimates

In this section, we define the estimators that will be compared. We will consider 
four regression-based estimators as well as the three design-based estimators 
proposed in this paper. We begin by detailing each of these estimators.

The first estimator is the regression without covariates, also known as the 
difference-in-means. The model can be written:

 0 1 ,ij j ijY D eβ β= + +  (27)

where β0 is a constant, Dj is an indicator for treatment, β1 is an estimate of Δ, and 
eij is an error term. Our estimate of β1 follows from fitting the model with ordi-
nary least squares. The next estimator under consideration is the fixed-effects 
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regression estimator, �,FE∆  which includes fixed effects for each of the blocks 
(strata):

 

1

0 1
1

,
F

ij j f f ij
f

Y D eβ β γ Γ
−

=

= + + +∑  
(28)

where β0, β1, Dj and eij are as above and Γf represents the dummy variable for the fth 
block, and the model is again fitted with ordinary least squares. We then consider 
the fixed-effects regression estimator that also adjusts for the covariates: average 
turnout in 2000 and age. The model can be written:

1

0 1 2 2 3 3
1

,
F

ij j ij ij f f ij
f

Y D X X eβ β β β γ Γ
−

=

= + + + + +∑

where β2 is the coefficient on precinct-level voter turnout in 2000, β3 is the coef-
ficient on age, and the model is fitted with ordinary least squares.

As Freedman (2008a) notes, even without clustering, the models above 
that include covariates may be biased due to regression adjustment if treatment 
assignment is imbalanced (i.e. nt≠nc) or there exists treatment effect heterogene-
ity (i.e. ∃i, j s.t. τi≠τj). For both fixed effects models, Huber-White “robust” cluster 
standard errors are estimated. While often sufficient for inference, these standard 
errors may be unreliable in finite samples (Freedman 2006; Angrist and Pischke 
2009) and they may also fail to address larger issues of model misspecification 
(King and Roberts 2014).

Our next estimator adds a random effect for cluster to the above specifica-
tion. Random effects estimation was the recommended analytical technique in 
Green and Vavreck (2008). However, as we will show, this estimator is not guar-
anteed to be unbiased. We use the following specification:

1

0 1 2 2 3 3
1

,
F

ij j ij ij f f j ij
f

Y D X X e eβ β β β γ Γ
−

=

= + + + + + +∑

where ej is a normally distributed cluster-level disturbance (and eij is also distrib-
uted normally). This model is estimated using the lmer() function in the lme4 
(Bates and Maechler 2010) package in R (R Development Core Team 2010) using 
the default settings. Standard errors are empirical Bayes estimates also produced 
by the lmer() function.

And, finally, we present treatment effect estimates for the HT estimator, the 
Des Raj difference estimator (with nj) and the Des Raj difference estimator (with 
nj and covariates). For all three the standard error estimates are the square root 
of our estimated “sharp null” variances ˆV̂ ( )N ∆  are used as opposed to ˆV̂( )∆  as 
the latter is not identified in the pair-randomized design.
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In this application we use the alternate blocks of the experiment to derive the 
values of k, k′ and ka from the data. For a given block, the values are estimated by 
dropping that block from the data and regressing the outcome on the covariates 
using data from the remaining 39 blocks.

To estimate k for the Des Raj estimator with only nj, we use the following 
model:

,T
j j jY kn eα= + +

where α is a constant, nj is cluster size, and ej is a random disturbance. This esti-
mation procedure yields a principled estimate for k. To estimate k′ and ka for the 
Des Raj estimator with both nj and covariates, we use the following model:

1 1 2 2 ,T T T
j j j j jY k n k X k X eα= + + + +′ ′

where α′ is a constant, 1
T
jX  is the total turnout in cluster j in the 2000 election, 

2
T
jX  is the sum of ages in cluster j.

Note that in the sharp null scenario the estimated values of k, k′, k1 and k2 are 
the same for all randomizations for a given block. For the heterogeneous treat-
ment effect scenario, however, these values can vary across randomizations as 
the observed values of T

jY  change depending on whether cluster j is in treatment 
or not. As mentioned above, this sort of variability in these values contributes 
to the variability of the Raj difference estimator. In our application, the variance 
estimators remain conservative nonetheless. In practice, if the contribution of k 
to the uncertainty is a concern, Monte Carlo simulations could be used to esti-
mate the variance.

6.4   Randomization Inference With the Sharp Null Hypothesis 
of No Treatment Effect

Figure 2 displays the results for the point estimators assuming the sharp null 
hypothesis of no treatment effect. Solid vertical lines indicate the mean of the 
sampling distributions.

Results show that all estimators are unbiased under the sharp null. The HT 
estimator is the least precise estimator by far. The rest perform very competitively 
with the random effects regression and Raj’s difference estimator being the most 
precise.

Figure 3 displays the results for the standard error estimators under 
the sharp null hypothesis. In the case of the regression with no covariates 
 (difference-in-means) the standard errors are biased upwards due to the failure 
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of this model to account for blocking.10 However, for the regression models 
that include fixed effects the standard errors are badly biased downward as 
we might expect given that sandwich type estimators tend to be unreliable in 
finite samples. The standard errors associated with the random effects model 
perform reasonably well, being only slightly biased downwards. Meanwhile, 
under the sharp null, the standard errors associated with the HT estimator and 
the Raj Difference estimators are exact, being both unbiased and having no 
sampling variability.

6.5   Randomization Inference with Treatment Effect 
Heterogeneity

Figure 4 displays results under treatment effect heterogeneity. Solid vertical lines 
indicate the mean of the sampling distributions. Dotted vertical lines indicate the 
true treatment effect (0.7 percentage points).

The results demonstrate that the regressions tend to be biased to varying 
degrees. Interestingly, the regression without covariates (difference-in-means) 
is only slightly biased downward. That the difference-in-means is not terribly 
biased can be understood as a result of the sample size (80 clusters) being suf-
ficiently large (recall the consistency proof in Section 3.3).

When the regressions include fixed-effects, however, the bias actually 
increases. This can be understood in light of the fact that fixed-effects regression 
estimates yield variance-weighted averages of the block-level estimates (Angrist 
and Pischke 2009). In other words, the fixed-effects estimator is equivalent to 
taking the difference-in-means for each block and then taking a weighted average 
of them. Since the block-level estimates are each biased, the overall average is 
similarly biased. As discussed in Section 3.4 above, this is a particularly troubling 
property of the fixed-effects estimator because it will also be inconsistent for 
increasing numbers of blocks. In other words, adding more blocks to the experi-
ment will not necessarily diminish the overall bias.

Again, the HT estimator is unbiased but has very poor precision. And while 
the random effects estimator has the lowest standard deviation, Des Raj’s differ-
ence estimators are the most precise in terms of RMSE.

10 Although we consider the bias of the standard error estimator, in practice, bias is not an ideal 
loss function for evaluating standard error estimators. However, given the size of the sample and 
the typical rate of convergence for variance estimators, we expect that bias serves as an approxi-
mation for asymptotic bias, which is of greater interest for constructing confidence intervals.
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Note also that the addition of the covariates (age and turnout rate in 2000) 
actually increases the variability in Raj’s difference estimator. This is because the 
covariates are not particularly predictive of the outcome and so the estimated 
values of k’s tend to miss their mark by a large extent.

Finally, Figure 5 displays the performance of the standard error estimators 
in the case of heterogeneous treatment effects. Results again show that the 
“robust cluster” standard errors can perform very badly, being substantially 
downwardly biased in the case of the regressions with fixed effects. The stand-
ard error estimator associated with the random effects regression performs 
well, being only slightly upwardly biased. The standard error estimators for the 
HT and Raj difference estimators are conservative, being biased only slightly 
upwards.

7  Conclusion
The unbiased estimation of the ATE in cluster-randomized experiments has 
been elusive. In unpacking the source of the bias in the difference-in-means 
estimator, this paper has also identified some common design-estimator com-
binations where the bias of estimators will not diminish with sample size such 
as pair- randomized designs combined with regression estimators with fixed 
effects for block. This paper has returned to the first principles of randomiza-
tion and sampling theory, showing that the fundamental statistical properties 
of randomization can be applied to modern causal inferential problems. Not 
only does the Des Raj estimator provide the basis for an unbiased and location-
invariant estimator for the analysis of cluster-randomized experiments, com-
pared to the HT  estimator it also achieves improved precision through covariate 
adjustment.

There are a number of theoretical implications of this return to the first prin-
ciples of randomization. First, machinery based solely on sampling-theoretic 
ideas can be sufficient for precise and unbiased estimation of causal parameters. 
Second, researchers need not feel that achieving precise and unbiased causal esti-
mates requires an up-to-date knowledge of complex statistical models: we may 
easily derive estimators with good statistical properties using only fundamental 
concepts. Third, utilizing such estimators serves to remind us of the importance 
of this distinction between observational studies and randomized experiments. 
The importance of the logic of the experiment, with its reliance on randomiza-
tion, may be lost when researchers rely on model-based estimators that may or 
may not reflect the experimental design.
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Appendix

A Proof of non-invariance of the Horvitz-Thompson 
estimator
To prove that the HT estimator is not invariant to location shifts, we need only 
replace T

jY  with its linear transformation:
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B Bias from estimating k from within-sample data
Consider the situation where one wishes to improve upon the HT estimator by 
adjusting for cluster size; in other words, one wishes to estimate k in equations 20 
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and 21 from the data to approximate the optimal value of k with an estimator ˆ.k  
In this scenario, the expected value of equation 20 yields
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(29)

where tjn  is the mean value of nj for clusters in the treatment condition in a given 
randomization. In the third line of equation 29, k̂  moves outside the summation 
operator because it is a constant for a given randomization. Likewise,

 �
0, 1 0

ˆE Cov ( , ),T T
R cjY Y M k n = −   (30)

where cjn  is the mean value of nj for units in the control condition in a given ran-
domization. So the expected value of the estimator will be

 
� �

1, 1 0, 1 ˆ ˆE ( Cov ( , ) Cov ( , ) ).
T T
R R

cj cj

Y Y M k n k n
N N

∆
 − = + −  

 (31)

The term on the right of equation 31 represents the bias. A special case with no 
bias is when the sharp null hypothesis of no treatment effect holds and treat-
ment and control groups have equal numbers of clusters. We refer the reader to 
 Williams (1961), Freedman (2008a) and Freedman (2008b) for additional reading 
on the particular bias associated with the regression adjustment of random 
samples and experimental data.

C Derivation of the optimal value of k 
To identify a single optimal value of k, koptim*, we refer to the first line of 
equation 17,

 � 2 2
1 0 1 0 1V ( ) ( ) ( ) 2 ( , )T T T T

R j j j jv c U t U U U∆ σ σ σ= + +  (32)

Brought to you by | University of California - Berkeley
Authenticated

Download Date | 11/3/15 12:13 AM



34      Joel A. Middleton and Peter M. Aronow

where 
2

2
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=  Now note that the terms 
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j jU Uσ  in equation 32 can be written as follows:
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and, defining δj = (nj–N/M),
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(35)

respectively. Substituting equations 33, 34, and 35 into equation 32,
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Setting the first derivative with respect to k equal to zero,
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